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Anchoring of a nematic liquid crystal on an anisotropic substrate†

A. PONIEWIERSKI* and A. SAMBORSKI

Institute of Physical Chemistry and College of Science,
Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

(Received 29 January 2000; in � nal form 18 March 2000; accepted 11 April 2000 )

A nematic liquid crystal in contact with a � at solid substrate is studied by means of a
mesoscopic Landau–de Gennes theory. It is assumed that the substrate is anisotropic, i.e. the
directions x̂ and ŷ in the surface of the substrate are not equivalent, and the only symmetry
is the mirror symmetry ŷ . Õ ŷ. Assuming the simplest form of the bare surface free energy,
where only the linear terms in the nematic order parameter are taken into account, we study
anchoring directions induced by the interaction of the liquid crystal with the substrate. A
phase diagram in terms of the surface � elds and the temperature is obtained. Depending on
the values of the surface � elds we � nd four types of anchoring: the symmetric planar anchoring,
with the director along x̂, the symmetric tilted anchoring, with the director in the xz plane,
the antisymmetric planar anchoring, with the director along ŷ, and the asymmetric tilted
anchoring, with the director tilted with respect to all three axes.

1. Introduction is a SiO
x

� lm evaporated under oblique incidence [4–6].
The symmetry group of this substrate contains twoOrientation of liquid crystal molecules by interfaces

is known as anchoring [1, 2]. The presence of a surface elements: the identity and the re� ection in the plane of
incidence. Anchoring induced by the SiO

x
� lm dependsbreaks both the translational and the rotational sym-

metry of a system. In the interfacial region, the order on the angle of incidence e measured with respect to the
surface normal. In some region of the incidence angle, aparameters diŒer from the bulk values. When the

distance from the surface is larger than the thickness of bistable anchoring is possible. This case is known as
asymmetric tilted anchoring, which means that the directorthe interface, the order parameters assume their bulk

values and the average orientation of molecules, the is neither in the plane of incidence nor perpendicular
to it. The domains corresponding to the two possibledirector, is � xed by the surface, provided there are no

other competing surfaces or � elds. The orientation of orientations of the director have been observed by
Jérôme and Pierański [7] in nematic droplets on SiOthe director chosen by the surface depends on the details

of both the liquid–substrate and the liquid–liquid inter- � lms. They also observed symmetric tilted anchoring (in
actions. Therefore, various types of anchoring can be the plane of incidence), for e > 75 ß , and antisymmetric
obtained [2, 3]. The symmetry of the substrate is also planar anchoring (normal to the plane of incidence), for
an important factor in studies of anchoring. This tells intermediate incidence angles. All con� gurations com-
us whether to expect a monostable, a multistable or a patible with the symmetry of the substrate are shown
degenerate anchoring. These terms refer to the number schematically in � gure 1. The possibility of twofold
of anchoring directions corresponding to the same liquid degeneracy in molecular orientation has been suggested
crystal–substrate surface free energy. For instance, in for bistable switching [8, 9]. Jägemalm et al. [10] have
the case of an isotropic substrate only monostable or studied the eŒect of a � eld-induced reorientation of nematic
degenerate anchorings are possible, where the former is liquid crystals on SiO

x
surfaces both experimentally and

known as homeotropic anchoring, and the latter can be theoretically. Faetti et al. [11] have measured the azi-
either planar or conical anchoring. muthal anchoring energy of a nematic liquid crystal on

A multistable anchoring is possible when the substrate a SiO substrate close to the nematic–isotropic transition
is anisotropic. This case is particularly interesting from temperature.
the point of view of practical applications in electro- Another example of an anisotropic substrate studied
optical devices. An example of an anisotropic substrate experimentally is the mica surface. It has been observed

that adsorption of non-mesogenic molecules, such as
water or ethylene glycol, on the mica surface can induce*Author for correspondence; e-mail: apon@ichf.edu.pl
anchoring transitions in a nematic liquid crystal in con-†This paper is dedicated to Professor Jan Stecki on the

occasion of his retirement. tact with the substrate [12–15]. The eŒect of adsorption
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1286 A. Poniewierski and A. Samborski

minima of the same depth, depends on the symmetry of
the substrate and the values of the expansion coe� cients.
Thus, truncating expansion (1) at some low l one can
obtain possible anchoring directions in terms of the
coe� cients Am

l
. For the SiO substrate this was done in

[7]. However, this is a purely phenomenologica l approach
as it does not relate the observed anchoring directions
to the parameters characterizing the system.

In this paper, we study a nematic liquid crystal in
contact with an anisotropic substrate of the same sym-
metry as an obliquely evaporated SiO � lm. To do this
we use the Landau–de Gennes theory [1, 20, 21], which
is also a phenomenological theory but formulated at a
mesoscopic level, and the parameters appearing in the
Landau–de Gennes free energy functional can, in principle,
be derived from a microscopic model. Moreover, thisFigure 1. Schematic picture of all types of anchoring discussed
approach does not require any assumptions concerningin the text. The xz plane is the mirror symmetry plane. h

and w are the polar and the azimuthal angles, respectively. the expansion of c in spherical harmonics and possibility
(a) Symmetric planar anchoring, (b) antisymmetric planar of truncation of the expansion at low l. We note, however,
anchoring (the orientations n̂ and Õ n̂ are equivalent),

a recent paper by Fournier and Galatola [22], in which
(c) symmetric tilted anchoring, and (d) asymmetric tilted

Gaussian � uctuations of the director � eld in the inter-anchoring (the mirror image of n̂ with respect to the xz
facial region have been taken into account. The authorsplane corresponds to the same free energy).

argue that the expansion of a renormalized surface
potential can be truncated at low order. The expansion

of non-mesogenic molecules on anchoring transitions
in question is not in spherical harmonics, but a doublehas also been studied theoretically by means of a micro-
Fourier expansion in h and w.scopic theory [16]. Anchoring transitions can also occur

In the Landau–de Gennes theory, the symmetry ofas the result of a conformation change of the aligning
the substrate is taken into account in the ‘bare’ surfaceagents, an eŒect which was demonstrated by Zhu et al.
free energy fs , which mimics the interaction of the liquid[17].
crystal molecules with the substrate. We assume theMicrotextured substrates are also anisotropic, and
simplest form of fs compatible with the symmetry of thethey have been studied theoretically by Qian and Sheng
substrate, i.e. only linear couplings with the surface order[18, 19]. They considered an alternating stripe pattern
parameter are considered. We calculate c(h, w) solvingof planar and homeotropic substrate potentials and
numerically the set of � ve non-linear Euler–Lagrangeshowed that it leads to a � rst order transition between
equations with the constraint of a � xed director intwo states with bulk directors orthogonal to each other.
the bulk.These states are called by Qian and Sheng the ‘yz state’

This paper is organized as follows. In § 2, we � rstand the ‘x state’, where z is normal to the substrate and
recall the Landau–de Gennes theory of non-uniformy is parallel to the stripes. In the terminology used in
nematic liquid crystals, and then study the phase diagramour paper, they correspond to symmetric tilted anchoring
for a few speci� c cases. The conclusions are presentedand antisymmetric planar anchoring, respectively.
in § 3.To study anchoring one usually considers the surface

free energy c of the nematic liquid crystal-substrate
interface as a function of the bulk nematic director, the

2. The model
orientation of which is de� ned by the polar angle h and

We consider a nematic liquid crystal in contact with
the azimuthal angle w. Then, c(h, w) can be expanded in

a � at solid substrate. The z axis of the coordinate system
spherical harmonics [2]

is oriented normal to the surface of the substrate. Both
the liquid–liquid and the liquid–substrate interactionsc(h, w) 5 �

l,m

Am
l

Y m
l

(h, w) (1 )
are described in terms of a continuum theory, in which
the only relevant variable is the orientational orderwhere the coe� cients Am

l Þ 0 only if the correspond-
parameter Q(r), a second rank, symmetric and tracelessing spherical harmonics Y m

l
are compatible with the

tensor. Thus, in general, Q has � ve independent com-symmetry of the substrate. The anchoring direction
ponents. Here we neglect � uctuations and assume thatcorresponds to the global minimum of c. Whether there

is one minimum, a � nite number or a continuous set of Q depends only on z. The free energy density is given
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1287Anisotropic substrate/NL C anchoring

by f 5 fG (dQ/dz) 1 fL (Q), where [20] assumed that fs depends on Q(z 5 0), the order para-
meter at the surface of the substrate. The form of fs
must be compatible with the symmetry of the substrate.fL(Q) 5

2
3

t Tr Q2 Õ
8
3

Tr Q3 1
4
9

(Tr Q2 )2 (2 )
Here, we restrict our considerations of fs only to terms
linear in Q. Then, in the most general form, fs is given byis a Landau free energy of a homogeneous system, and

fs 5 Õ Tr(h ¯ Q) (8)
f
G 5

1
2

L
1

Tr AdQ

dz B2
1

1
2

L
2
ẑ ¯ AdQ

dz B2
¯ ẑ (3)

where the surface � eld tensor h is also symmetric and
traceless. The molecular origin of equation (8) is the

is the contribution to the free energy due to inhomo-
term Ÿ dzdvV (z, v)r(z, v) in the free energy functional,

geneities (ẑ is a unit vector along the z axis). t is assumed
where V (z, v) denotes the potential energy of interaction

to be a linear function of the temperature, whereas the
between the liquid crystal molecules and the substrate,

elastic constants L
1

and L
2

are considered to be temper-
and r(z, v) denotes the one-particle distribution function.

ature independent. As independent variables, we choose
Both V and r depend on z and the angular variable v.

q, p, Q
xy

, Q
xz

, and Q
yz

, where Q
xx

5 Õ 1/2 q 1 p, Q
yy

5
For linear molecules, V can be expanded in spherical

Õ 1/2 q Õ p, and Q
zz

5 q. They satisfy the condition
harmonics. Truncation of the expansion at the lowest

Tr Q 5 0 and have a clear physical interpretation.
order compatible with the symmetry of the molecules

The parameter q3 7 P2 (cos hm ) 8 measures the align-
( l 5 2) leads to equation (8). In the isotropic case, h

xx
5

ment of molecules with respect to the z axis, and h
yy

5 Õ 1/2 h
zz

, and the remaining components of h
p3 7 sin2 h

m
cos 2w

m 8 measures the biaxiality of the
vanish; then, fs 5 Õ 3/2 h

zz
Q

zz
. Next, let us consider the

system in the xy plane, where the angles hm and wm case of broken rotational symmetry in the xy plane.
de� ne the orientation of the molecular long axis. If the

That is, we assume that a particular direction in the xy
director is tilted with respect to the z axis then some of

plane has been chosen by some physical process, and
the oŒ-diagonal components, or all of them, do not

the x axis is oriented along this direction; thus, h
xy

5 0.
vanish. If only q Þ 0 then the system is uniaxial with

In general, the remaining oŒ-diagonal components do
respect to the z axis. One � nds that

not vanish. Assuming that the substrate has the sym-
metry y . Õ y we also have h

yz
5 0. Then, we can express

Tr Q2 5
3

2
q2 1 2( p2 1 Q2

xy
1 Q2

xz
1 Q2

yz
) (4 ) the tensor h as follows

h 5 h
1 A1

3
I Õ ŷŷB 1 h

2
(ẑẑ Õ x̂x̂) 1 h

3
(x̂ẑ 1 ẑx̂) (9)Tr Q3 5 3C1

4
q3 Õ qp2 Õ qQ2

xy
1 A1

2
q 1 pBQ2

xz

where I denotes the unit tensor, which gives
1 A1

2
q Õ pBQ2

yz
1 2Q

xy
Q

xz
Q

yzD . (5 )
fs 5 h1Q

yy
1 h2 (Q

xx
Õ Q

zz
) Õ 2h3Q

xz
For this choice of variables, the N–I transition is at

5 Õ A1

2
h1 1

3

2
h2B q Õ (h1

Õ h2 )p Õ 2h3Q
xz

. (10)t 5 1, and at t 5 0 the isotropic phase becomes unstable.
It is also convenient to introduce a dimensionless z to

The case of an isotropic substrate corresponds tohave
h
1

Õ h
2 5 h

3 5 0. Alternatively, we can express h in the
diagonal formfG 5

1
2

L
qAdq

dzB2
1

1
2

L
pCAdp

dzB2
1 AdQ

xy
dz B2D

h 5 h1A1
3

I Õ ŷŷB 1 h(k̂k̂ Õ l̂l̂) (11)

1
1
2

L
vCAdQ

xz
dz B2

1 AdQ
yz

dz B2D (6)

where k̂ 5 sin ax̂ 1 cos aẑ and l̂ 5 cos ax̂ Õ sin aẑ, hence
h2 5 h cos 2a and h3 5 h sin 2a.where L

q
5 1, L

p
5 2L

1
/(3/2 L

1 1 L
2
), and L

v
5 (2L

1 1 L
2
)/

It is instructive to � nd � rst the minima of the bare surface(3/2 L
1 1 L

2
).

free energy f
s
, for Q in the uniaxial approximationThe surface free energy functional for a semi-in� nite

system is given by

Q 5 QbA3
2

n̂n̂ Õ
1
2

IB (12)
F[Q] 5 P2

0
[ f (dQ/dz, Q) Õ fb] dz 1 fs[Q(0)] (7 )

where Qb denotes the bulk value of the main order
parameter, and n̂ 5 n̂(h, w) is the bulk director. As usual,where fb is the free energy density in the bulk, and fs is

the surface contribution to the total free energy. It is h is measured from the z axis, and w is measured from
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1288 A. Poniewierski and A. Samborski

the x axis. Then, fs as a function of h and w is given by From equation (14) one � nds that both qc/qh and qc/qw
vanish at h 5 w 5 p/2, and qc/qw 5 0 at w 5 0.

In this paper, we do not explore the whole three-
fs 5

3
2

Qb{h1 sin2 h sin2 w
dimensional space of surface � elds. Instead, we concen-
trate on the following three cases: (1) h2 5 0, (2) h1 5 Õ h2 ,

Õ h[cos 2a(cos2 h Õ sin2 h cos2 w) and (3) h3 5 0. In case (1 ), fs 5 h1Q
yy

Õ 2h3Q
xz

, whereas
in case (2), fs 5 Õ 2h1Q

xx
Õ 2h3Q

xz
.1 sin 2a sin 2h cos w]} (13)

Let us � rst consider case (1) with the additional
assumption that h

3 5 0. For h
1 > 0, a negative Q

yy
iswhere we have neglected the constant term. There are

favoured by fs , which means n̂ in the xz plane. It is alsotwo possible minima of fs : at h 5 w 5 p/2, corresponding
clear from equation (13) that fs does not favour anyto antisymmetric planar anchoring, and at w 5 0, h 5 a,
particular orientation of n̂ in the xz plane. However, cfor h > 0, or w 5 0, h 5 a 1 p/2, for h < 0, both corres-
does depend on n̂. To show this we compare c for theponding to symmetric tilted anchoring. The transition
homeotropic and for the planar director orientations,between the two anchorings occurs when |h| 1 h1 5 0.
using the uniaxial approximation for Q. Then, theFor h

1 > 0, only the symmetric tilted anchoring mini-
equilibrium surface free energy is given bymizes fs . We shall see, however, that the true phase

diagram obtained from minimization of F[Q] is much

richer than that obtained on the basis of the bare surface c 5 Ó 2M P Q(0)

Qb

[ f
L
(Q) Õ f

b
]1/2 dQ Õ

1

2
h
1
Q (0) (15)

free energy.

To � nd the equilibrium orientation of n̂ we proceed
where Q (0) is the surface value of the mainas follows [21]. First, we solve the Euler–Lagrange
order parameter satisfying the boundary condition:equations for the � ve independent components of Q.
Ó 2M[ fL (Q (0) ) Õ fb

]1/2 5 1/2 h1 . The constant M 5 1 inThe bulk director orientation, de� ned by h and w, is
the homeotropic case, and M 5 (3/2 L 1 1 1/4 L 2 )/� xed at z 5 l (this l should not be confused with the
(3/2 L 1 1 L 2 ) in the parallel case. Note that the ratio ofindex of spherical harmonics) to provide the boundary
the Frank elastic constants obtained from the Landau–condition for Q via equation (12). This is equivalent to
de Gennes theory is K1/K2 5 K3/K2 5 1 1 1/2 L 2/L 1 ,placing a strongly anchoring wall a distance l from the
thus L 2

~ 3L 1 is in the experimental range. It is easy tosubstrate [23, 21]. The distance l should be large com-
show that c is an increasing function of M, which meanspared with the nematic correlation length, as only then
that for L 2 > 0 the parallel orientation is stable. However,can approximation (12) be used. The local director n̂(z),
this conclusion is valid only if a local biaxiality can befor 0 < z < l, can be deduced from Q(z); however, it is
neglected. Therefore, we have solved numerically thenot relevant to our present studies. We de� ne the surface
set of Euler–Lagrange equations for the components offree energy as follows: c(h, w) 5 F[Qeq], where Qeq
Q, using a standard relaxation method [25], to � ndsatis� es the Euler–Lagrange equations with the boundary
c(h, w 5 0). In all cases considered in this paper, weconditions at z 5 l speci� ed above, and the integration
assume L 2/L 1 5 3. It results from equation (10) that forin equation (7) is over 0 < z < l. The anchoring direction
h
1 > 0 and h

2 5 0, f
s

favours positive values of q (0) andis found by minimization of the function c(h, w). Note
p (0). We have found that when h

1
is small then n̂ isthat c depends also on l chosen to specify the boundary

along the x axis (h 5 p/2, w 5 0). We call this case thecondition for Q. In other words, it depends on the choice
symmetric planar anchoring. However, for h1 larger than

of the Gibbs dividing surface in the sense of Yokoyama
some critical value h1c , which is a function of t, the[23]. Since in this work we are interested only in the
director is tilted in the xz plane. This is the symmetric

anchoring directions, and not the anchoring energy
tilted anchoring. Because of the symmetry x̂ . Õ x̂, for[23, 24], this dependence is not so important, however,
h3 5 0, c has two minima of equal depth: at h 5 hmin and

provided that l is placed outside the interfacial region.
at h 5 p Õ hmin , where 0 < hmin < p/2. This means that

Then, h
min

and w
min

corresponding to the minimum of c
symmetric tilted anchoring is bistable for h1 > h1c and

at the given l converge quickly to their limits at l 5 2 . h3 5 0. The transition between symmetric planar
In practice, it is su� cient to take l of the order of a few

anchoring and symmetric tilted anchoring is continuous
correlation lengths. Since the orientations n̂ and Õ n̂ are

and occurs at h
1 5 h

1c
and h

3 5 0.
physically equivalent, and because of the symmetry

When h3 Þ 0 the symmetry x̂ . Õ x̂ is broken, and if
ŷ . Õ ŷ, we have n̂ is in the xz plane it is always tilted. For 0 < h1 < h1c ,

the symmetric planar phase becomes symmetric tilted
c(h, w) 5 c(p Õ h, p 1 w) 5 c(h, Õ w) 5 c(p Õ h, p Õ w).

when h3 is switched on. Therefore, there is no phase
transition between the regions h

1 < h
1c

and h
1 > h

1c
. The(14)
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1289Anisotropic substrate/NL C anchoring

transition occurs only when h3 5 0. In the region h1 > h1c rather peculiar result that although there is a jump in
the director orientation, fs does not have two minimaand h3 Þ 0, one of the two minima of c becomes deeper

than the other. The line h
3 5 0, h

1 > h
1c

is a line of a of equal depth at the transition, as usually expected.
Instead, one minimum is replaced by the other, as in a� rst order transition. Along this line the tilt angle jumps

from h+min to h Õmin 5 p Õ h+min, where h Ô
min correspond to the continuous transition. This also shows that expansion

(1) may lead to non-physical results when it is truncatedlimits h3 . Ô 0, respectively. In contrast, the tilt angle is
a continuous function of h3 in the region 0 < h1 < h1c , at low order. On the other hand, c(h, w) obtained from

the minimization of F[Q] does not suŒer from such aand it tends to p/2 when h
3

� 0. Thus, the � rst order
transition is analogous to the transition between two non-physical behaviour. Indeed, it exhibits two minima,

although the region of metastability is rather narrow.states of opposite magnetization in ferromagnetic sys-
tems at zero magnetic � eld. Similarly, the symmetric It is instructive to consider the anchoring transitions

in terms of the tensor Q. For both the symmetric tiltedplanar–symmetric tilted continuous anchoring transition
resembles the paramagnetic–ferromagnetic transition. and the antisymmetric planar phases, Q

xy
5 Q

yz
5 0, and

Q
xz Þ 0. Indeed, Q

xz
5 0 satis� es the Euler–LagrangeFor h

1 < 0, h
2 5 0 and h

3 Þ 0, we � nd a � rst order
transition between the symmetric tilted anchoring and equations only if h

3 5 0. Thus, the transition between
these two phases must be � rst order, since it is not athe antisymmetric planar anchoring, where the latter

corresponds to n̂ parallel or antiparallel to ŷ. The symmetry breaking transition. Above the critical point
at h1 5 h1c, h3 5 0, there are two symmetric tilted phases:transition occurs because of the competition between

the � rst term in fs (see equation (10)), which favours with Q
xz

> 0, for h3 > 0, and Q
xz

< 0, for h3 < 0, which
coexists at h

3 5 0. At the critical point, the diŒerenceq < 0 and p < 0, i.e. the director along the y axis, and
the third term, which favours the director in the xz between the symmetric tilted phases disappears, and for

0 < h1 < h1c , Q
xz

� 0 when h3
� 0.plane. In � gure 2, we present the phase diagram in the

(h1 , h3 ) plane, for h2 5 0 and t 5 0, and for the ratio of For t 5 0, h1c is rather large. When the temperature
decreases h1c also decreases, and eventually it reacheselastic constants L 2/L 1 5 3. The transition line between

antisymmetric planar anchoring and symmetric tilted h1 5 0. This is shown in � gure 3, where the phase diagram
is presented in the (t, h

1
) plane, for h

2 5 h
3 5 0. The lineanchoring, found from the minimization of F[Q], diŒers

only slightly from the line |h3 | 5 Õ h1 obtained from the of critical points (dashed line) divides the half plane
h1 > 0 into two regions. In the lower region, the symmetricminimization of fs given by equation (13). This means

that the sample is only very weakly distorted. We planar phase is stable. In the upper region, there are
two symmetric tilted phases with Q

xz Þ 0, correspondingnote, however, that the analysis of fs (h, w) alone gives a
to the limits h

3
� Ô 0, respectively. Along the line h

1 5 0
there is a jump in the order parameter p, which changes
sign from positive, for h1 > 0 (n̂ in the xz plane) to
negative, for h1 < 0 (n̂ along the y axis).

Figure 2. Phase diagram in the (h1 , h3 ) plane, for h2 5 0 and
t 5 0. The solid lines show � rst order phase transitions. The
dot marks the critical point (h1c , 0 ), at which the diŒerence
between the two symmetric tilted phases disappears. The

Figure 3. Phase diagram in the (t, h1) plane, for h2 5 h3 5 0. Theline 0 < h1 < h1c , h3 5 0 corresponds to symmetric planar
anchoring (h 5 p/2, w 5 0). The transition between the symmetric planar–symmetric tilted anchoring transition

is continuous (dashed line), whereas the transition to thesymmetric planar and symmetric tilted anchorings is
continuous. antisymmetric planar anchoring is � rst order (solid line).
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1290 A. Poniewierski and A. Samborski

A richer phase diagram is obtained in case (2) bulk � eld, coupling with Q
yz

, is required to remove this
degeneracy. For h1c< h1< 0 and h3 around zero, the anti-(h2 5 Õ h1 ). In � gures 4 and 5 we show the phase diagram

in the (h
1
, h

3
) plane, for the temperatures t 5 0 and symmetric planar phase is stable. At some |h3 | 5 |h3

(h
1
) |,

a transition to the asymmetric tilted region occurs. Thist 5 Õ 0.5, respectively. For h1 > 0 and h3 Þ 0, fs favours
Q

xx
> 0 and Q

xz Þ 0; thus, the only stable phase in this is a line of critical points, at which the diŒerence between
the asymmetric tilted phases disappears, i.e. Q

xy
and Q

yz
region is the symmetric tilted phase. For h1 < h1c < 0,
there is a region of stability of the asymmetric tilted vanish at the transition. They also vanish at the asym-

metric tilted-symmetric tilted transition, which is alsophases, in which none of the oŒ-diagonal components
of Q vanish. Because of the mirror symmetry ŷ . Õ ŷ, continuous. When the temperature decreases from t 5 0

(� gure 4) to t 5 Õ 0.5 (� gure 5), the region of stability ofthe anchoring in this region is bistable, i.e. c(h, w) has
two minima of equal depth at (hmin , Ô wmin). Thus, the the antisymmetric planar phase shrinks, and h1c moves

towards zero.plane (h1 , h3 ) is the plane of coexistence of the two
asymmetric tilted phases. An additional surface or a In � gures 6–9, we present the polar angle h and the

azimuthal angle w corresponding to the equilibrium
orientation of n̂ as functions of h

3
, for the temperature

t 5 0. h(h3 ) is shown in � gures 6 and 7, for h1 5 Õ 1.25

Figure 4. Phase diagram in the (h1 , h3 ) plane, for h2 5 Õ h1
and t 5 0. The dashed lines show continuous transitions.
In the asymmetric tilted region, two asymmetric tilted
phases coexist. The diŒerence between these two phases

Figure 6. Polar angle h as a function of h3, for h1 5 Õ h2 5 Õ 1.25disappears along the lines of continuous transitions to the
and t 5 0.antisymmetric planar phase or the symmetric tilted phase.

Figure 7. Polar angle h as a function of h3, for h1 5 Õ h2 5 Õ 0.75Figure 5. Phase diagram in the (h1 , h3 ) plane, for h2 5 Õ h1
and t 5 Õ 0.5. and t 5 0.
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1291Anisotropic substrate/NL C anchoring

Note that if we write the bare surface free energy in
the form

f
s 5 Õ h

xx
Q

xx
Õ h

yy
Q

yy
Õ 2h

xz
Q

xz
(16)

where h
xx

5 Õ 2h2 , h
yy

5 Õ (h1 1 h2 ) and h
xz

5 h3 , then
cases (1) and (2) correspond to h

xx
5 0 and h

yy
5 0,

respectively. Thus, in � gure 2 we have presented the
phase diagram in the (h

yy
, h

xz
) plane, whereas in � gures

4 and 5, the phase diagram is in the (h
xx

, h
xz

) plane. For
completeness, we have also studied case (3), i.e. h3 5 0.
The phase diagram in the (h

xx
, h

yy
) plane, for t 5 0, is

presented in � gure 10. In this case, both mirror sym-
metries: x̂ . Õ x̂ and ŷ . Õ ŷ are present. Therefore, the
phase diagram is symmetric with respect to the diagonal
h
xx

5 h
yy

. There are two anchoring transitions along the
diagonal h

xx
5 h

yy
. For h

xx
> 0, the director jumps from

Figure 8. Azimuthal angle w as a function of h3 , for
the orientation along the x axis to the orientation alongh1 5 Õ h2 5 Õ 1.25 and t 5 0.
the y axis. For h

xx
< 0, there is a continuous transition

between n̂ in the xz plane and n̂ in the yz plane. Along
the continuous transition line the orientation of n̂ is
homeotropic. This is a phase transition, since in each
region of the tilted anchoring either Q

yz
5 0, Q

xz Þ 0 or
Q

xz
5 0, Q

yz Þ 0. The phase transitions between planar
anchoring and tilted anchoring are also continuous.
Although the lines of these transitions appear to be
straight lines, in fact they are curves (see the inset in
� gure 10), and the crosses mark their intersections with
the lines h

xx
5 0 and h

yy
5 0, respectively. In each region

of tilted anchoring, there are two possible directions of
the tilt. The application of an additional surface � eld h

xz
chooses one of the tilt directions in the xz plane. Then,
the region of tilted anchoring in the yz plane becomes

Figure 9. Azimuthal angle w as a function of h3 , for
h1 5 Õ h2 5 Õ 0.75 and t 5 0.

and h1 5 Õ 0.75, respectively. In the � rst case (� gure 6),
h(h3 ) does not tend to p/2 when h3

� 0. Since w(h3 ) � p/2
when h3

� 0, the director is tilted in the yz plane at
h
3 5 0, and there are two possible directions of the tilt.

This situation is analogous with the symmetric tilted
anchoring (in the xz plane) at h3 5 0, obtained in case
(1). The transition to the symmetric tilted phase occurs
at a rather small value of h. After the transition h is a
slowly increasing function of h3 . The angle w decreases
continuously from p/2 at h

3 5 0 to zero at the transition
Figure 10. Phase diagram in the (h

xx
, h

yy
) plane (h3 5 0), forto the symmetric tilted phase (� gure 8). For h1 5 Õ 0.75,

t 5 0. The solid line shows a � rst order transition, and theboth h and w are equal to p/2 in the region of antisym-
dashed lines show continuous transitions. The exact shape

metric planar anchoring. In the region of asymmetric of the transition line between the planar and the tilted
tilted anchoring, they are both decreasing functions of anchorings is shown in the inset. The crosses mark the

intersection of the curves with the lines h
xx

5 0 and h
yy

5 0.h
3
. This is shown in � gures 7 and 9, respectively.
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1292 A. Poniewierski and A. Samborski

the region of asymmetric tilted anchoring, and the region ment is because of the speci� c choice of the surface � elds
or because of neglecting higher order terms in fs . Furtherof planar anchoring along the x axis disappears, since

for n̂ in the xz plane only a tilted anchoring is possible exploration of the (h
xx

, h
yy

, h
xz

) space should answer this
question.when h

xz Þ 0.
We note that Qian and Sheng [18, 19] have also

studied the Landau–de Gennes model, with a diŒerent3. Conclusions
We have applied the Landau–de Gennes model of form of fs , however. They assume that the substrate

is inhomogeneous, and f
s 5 GQ

zz
, where G is a stepthe nematic liquid crystal–substrate interface to study

anchoring at an anisotropic substrate. To mimic the function, negative in the homeotropic regions and positive
in the regions of planar alignment. Thus, the anisotropynematic liquid crystal–substrate interactions we have

used the simplest form of the bare surface free energy, of the substrate is due to an alternating stripe pattern
of the homeotropic and planar alignment potentials.in which only the terms linear in the order parameters

at the surface are considered. Thus, fs as a function of From the macroscopic point of view, anchoring on such
an inhomogeneous substrate is similar to anchoring onthe surface director contains spherical harmonics only

with l 5 2. In general, the surface free energy c(h, w) a homogeneous anisotropic substrate considered by us.
Thus, the case studied by Qian and Sheng correspondscan also be expanded in spherical harmonics, and the

truncation of the expansion at l 5 2, compatible with the to the case h
xz

5 0 in equation (16), as far as the
symmetry of the substrate is concerned. It is clear frommirror symmetry ŷ . Õ ŷ, leads to two possible anchor-

ings: symmetric tilted anchoring and antisymmetric � gure 3 that in this case we also obtain a direct � rst
order transition between the symmetric tilted and anti-planar anchoring. A symmetry breaking transition to

the asymmetric tilted anchoring is possible only when symmetric planar anchorings reported in [18, 19],
although it occurs at rather low temperatures. For higherhigher order terms (l > 2) are included in the expansion

of c(h, w). In the framework of the Landau–de Gennes temperatures, the regions of symmetric tilted and anti-
symmetric planar anchorings are separated by the regiontheory, higher order terms are eŒectively generated even

if the expansion of fs is truncated at l 5 2. We have of symmetric planar anchoring, not observed by Qian
and Sheng.shown that in a special case, when the interactions of

liquid crystal molecules with the substrate favour n̂ in In the next step, the terms quadratic in Q (z 5 0)
should be added to fs . They take into account the eŒectthe yz plane rather than in the xz plane, the transition

from symmetric tilted anchoring to asymmetric tilted of the reduction of interactions between liquid crystal
molecules at the surface because of missing nearestanchoring can occur. This shows that the description

of liquid crystal interfaces in terms of the director � eld neighbours. In the case of isotropic substrates, such an
extension leads to the three second order terms: Tr Q2,alone is insu� cient in some cases, and a more re� ned

analysis of the interfacial structure, which takes into (ẑ ¯ Q ¯ ẑ)2 and ẑ¯ Q2 ¯ ẑ. In general, there are 15 second
order combinations of � ve independent components ofaccount variations of the order parameters, is necessary.

We have presented phase diagrams in the space of Q. In the case of the ŷ . Õ ŷ symmetry, there are nine
second order terms compatible with this symmetry. Ifsurface � elds, which means that for a � xed temperature,

diŒerent values of these � elds correspond to diŒerent we choose Q
xx

and Q
yy

as independent diagonal com-
ponents then we have the following invariants: Q2

xx
, Q2

yy
substrates. This resembles the experimental situation
with SiO � lms, where diŒerent types of anchoring are , Q2

xz
, Q2

xy
, Q2

yz
, Q

xx
Q

yy
, Q

xx
Q

xz
, Q

yy
Q

xz
and Q

xy
Q

yz
.

Alternatively, we can express fs in the following invariantobtained by changing the incidence angle. Comparison
of the experimental results with the results obtained in form
the framework of the Landau–de Gennes theory shows

fs 5 Õ h
xx

(x̂ ¯ Q¯ x̂) Õ h
zz

(ẑ ¯ Q ¯ ẑ) Õ 2h
xz

(x̂ ¯ Q¯ ẑ)that an increase of the incidence angle has the same
eŒect on the anchoring as an increase of the component

1
1

2
{g(0) Tr Q2 1 g(2)

xx
(x̂ ¯ Q2 ¯ x̂) 1 g(2)

zz
(ẑ ¯ Q2 ¯ ẑ)h3 5 h

xz
of the surface � eld tensor. To � nd the relation

between the surface � elds and the experimentally measured
1 2g(2)

xz
(x̂ ¯ Q2 ¯ ẑ) 1 g(4)

xxxx
(x̂ ¯ Q¯ x̂)2angle of incidence, it would be necessary to derive the

Landau–de Gennes free energy functional from a micro- 1 g(4)
zzzz

(ẑ ¯ Q¯ ẑ)2 1 2g(4)
xxzz

(x̂ ¯ Q ¯ x̂) (ẑ ¯ Q ¯ ẑ)
scopic model. Although our results agree qualitatively

1 4g(4)
xxxz

(x̂ ¯ Q¯ x̂)(x̂ ¯ Q ¯ ẑ)with experiment in all cases that we have studied, the
transition from symmetric tilted anchoring to asym- 1 4g(4)

zzxz
(ẑ¯ Q¯ ẑ) (x̂ ¯ Q ¯ ẑ)}. (17)

metric tilted anchoring occurs at a rather small value of
the polar angle, whereas experimentally it is around 70 ß When the order parameter is approximated by the

uniaxial form Q 5 Q (3/2 n̂n̂ Õ 1/2 I), then the g(4) terms[7]. It is not clear at the moment whether this disagree-
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1293Anisotropic substrate/NL C anchoring

[9] Barberi, R., Giocondo, M., and Durand, G., 1992,contribute to the spherical harmonics with l 5 4, whereas
Appl. Phys. L ett., 60, 1085.the g(2) terms contribute only to the spherical harmonics

[10] Jägemalm, P., Barbero, G., Komitov, L., and
with l 5 2. Thus, if Q does not diŒer too much from Q

b
in Zvezdin, A. K., 1998, Phys. Rev. E, 58, 5982.

the interfacial region, then the g(2) terms and the linear [11] Faetti, S., Gatti, M., Palleschi, V., and Sluckin, T. J.,
1985, Phys. Rev. L ett., 55, 1681.terms should have similar eŒects on the equilibrium

[12] Bechhoefer, J., Duvail, J.-L., Masson, L., JeÁ rôme, B.,orientation of n̂. Stronger modi� cations of the phase
Hornreich, R. M., and Pieranski, P., 1990, Phys. Rev.diagram can be expected from the g(4) terms. This
L ett., 64, 1911.

requires further studies, however. In future work, we [13] JeÁ rôme, B., O’Brien, J., Ouchi, Y., Stanners, C., and
also intend to apply the Landau–de Gennes formalism Shen, Y. R., 1993, Phys. Rev. L ett., 71, 758.

[14] JeÁ rôme, B., and Shen, Y. R., 1993, Phys. Rev. E, 48, 4556.to the study of wetting on anisotropic substrates.
[15] JeÁ rôme, B., 1994, Mol. Cryst. liq. Cryst., 251, 219.
[16] Teixeira, P. I. C., and Sluckin, T. J., 1992, J. chem.
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